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1. Introduction

Consider the difference between the words number and numeral, as they are used
by mathematicians.

Webster’s New World dictionary defines number as a symbol or word, or a group
of either of these, showing how many or which one in a series. This is clearly
not what we mean when we refer to rational or real numbers. Yet, the alternate
definitions are even further from our usage. Perhaps closer would be an idea cor-
responding to a quantity. Let’s take that for now (although it certainly seems to
exclude complex numbers).

Webster’s does a better job with the second word, defining numeral as a figure,
letter, or word, or a group of any of these, expressing a number. So if a number is
an idea, a numeral is an expression of an idea.

Our standard way of writing numbers depends on the choice of 10 as a base; this
is called the decimal system. For example, the number eight thousand six hundred
forty two divided by twenty five is written in decimal as

8642
25

= 345.68 = 3(102) + 4(101) + 5(100) + 6(10−1) + 8(10−2).

However, the choice of ten is arbitrary, and other cultures have made other choices.
In this note, we explore how to express numbers in differing bases, and discover

an interesting fact about radix expansions in alternate bases.
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2. Integer Expansion Algorithm

The property of the integers which is pivotal is understanding bases is the way
an integer breaks down into a quotient and remainder when it is divided by another
integer. We state the result we use.

Proposition 1. Division Algorithm
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = mq + r and 0 ≤ r < m.

We call q the quotient and r the remainder.
Recall that a polynomial is a function of the form

f(x) =
k∑

i=0

aix
i = a0 + a1x + a2x

2 + · · ·+ akxk,

where the coefficients ai are selected from some prespecified set. We will use the
division algorithm to show how to express an integer n as a polynomial in b, where
b is the base. That is, for b, n ∈ Z with with b ≥ 2, we find f as above with and
0 ≤ ai < b such that f(b) = n.

Lets first consider how we compute f(b). The naive way to evaluate the poly-
nomial f at a given value for x involves evaluating each monomial separately and
adding the values together. This requires k additions and

∑k
i=1 i = k(k+1)

k multi-
plications.

However, we may factor the polynomial thusly:

f(x) = a0 + x(a1 + x(a2 + · · ·+ x(ak−1 + x(ak)) . . . )).

Evaluating this at the same x requires k additions and k multiplications.

Proposition 2. Integer Expansion Algorithm
Let b, n ∈ Z with b ≥ 2. Then there exists a unique polynomial

f(x) =
k∑

i=0

aix
i

with integer coefficients such that
(1) f(b) = n;
(2) 0 ≤ ai < b, with ak > 0.

We call the coefficients ai the base b digits of the number n. We may compute
these as follows. Let n ∈ Z; for simplicity assume n is positive. The division
algorithm states that n = bq + r for some q, r ∈ Z with 0 ≤ r < b. That 0 ≤ r < b
states that r is a digit in base b.

Set q0 = n, q1 = q, and r0 = r so that the above equation becomes

q0 = bq1 + r0.

Then inductively compute
qi = bqi+1 + ri.

Since the qi’s are positive and decreasing, this process eventually ends, say at the
kth stage, so that

qk = bqk+1 + rk with qk+1 = 0;
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at this point, rk = qk. If we plug this back into the previous equation qk−1 =
bqk + rk−1, we see that qk−1 = brk + rk−1, which we rewrite as qk−1 = rk−1 + brk.
If we then take this and plug it back into its predecessor and rearrange, we obtain
qk−2 = bqk−1 +rk−2 = rk−2 +b(rk−1 +brk). Next, and in the same manner, we find
that qk−3 = rk−3 + b(rk−2 + b(rk−1 + brk)). Continuing this process, we eventually
arrive at

n = q0 = r0 + b(r1 + b(r2 + b . . . (rk−1 + brk) . . . )).
Rewritten in standard polynomial form, using summation notation, this becomes

n =
k∑

i=0

rib
i.

In shortened notation, the base b numeral representing the number n is written

n = (rkrk−1 . . . r1r0)b.

That is, the digits of n written in base b are the remainders upon successive division
by b.

3. Radix Expansion Algorithm

The expression of a real number in base b is called its base b radix expansion.
We show how to find this for a real number between 0 and 1; combine this with the
integer expansion algorithm to find the base b expansion of any real number.

Definition 1. A power series is a function of the form

f(x) =
∞∑

i=0

aix
i,

where ai ∈ C.

For example, |x| < 1 and ai = 1 for all i, then the power series is a convergent
geometric series.

Proposition 3. Radix Expansion Algorithm
Let z ∈ R with 0 < z < 1 and b ∈ Z with b ≥ 2. Then there exists a unique power
series

f(x) =
∞∑

i=0

aix
i

with integer coefficients such that
(1) f( 1

b ) = z;
(2) 0 ≤ ai < b for all i;
(3) if ai = b− 1 then there exists j > i such that ai 6= b− 1.

Note that since ai ≤ b−1 for all i, then f( 1
b ) ≤

∑∞
i=0(

b−1
b )i, which is a geometric

series and therefore is convergent. Thus f( 1
b ) also converges.

Let z ∈ (0, 1). Then 0 ≤ bz0 < b. Multiply z0 by b and take the integer part;
call this p1. Set

z1 = bz0 − p1 with p1 ∈ Z, 0 ≤ p1 < b, and 0 ≤ z1 < 1.

Repeat this: z2 = bz1 − p2, z3 = bz2 − p3, and so forth. Inductively, take zi and
produce pi+1 and zi+1 such that

zi+1 = bzi − pi+1 with pi+1 ∈ Z, 0 ≤ pi+1 < b, and 0 ≤ zi+1 < 1.
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The base b radix expansion of z is the series

z =
∞∑

i=0

pi
1
bi

.

For the valiant reader, we explain why the series above converges to z. To do
this, we show that the difference between the z and the partial sums of the series
becomes as small as we want as we add additional terms. Such proofs often begin
with the phrase “let ε > 0”; this means that ε is arbitrarily small, and we show
that the difference eventually becomes less than ε.

Let ε > 0 and select k ∈ N so large that 1
bk < ε. Then zk+1

bk+1 < ε. Solve each
equation zi+1 = bzi − pi+1 for zi to obtain

zi = b−1(pi+1 + zi+1).

Rewind all this by substituting each such equation into the previous one:

zk = b−1pk+1 + b−1zk+1;

zk−1 = b−1(pk + b−1pk+1) + b−2zk+1;

zk−2 = b−1(pk−1 + b−1(pk + b−1pk+1)) + b−3zk+1;
and so forth, until eventually

z = z0 = b−1(p1 + b−1(p2 + b−1(. . . b−1(pk + b−1pk+1) . . . ))) + b−(k+1)zk+1.

Thus

z −
k∑

i=0

pi
1
bi

=
zk+1

bk+1
< ε,

which shows the convergence we desire.

4. Rational Expansion Property

Let z ∈ Q, and for simplicity assume that 0 < z < 1. Then z = m
n for some

m,n ∈ N with m < n such that gcd(m,n) = 1; this last condition guarantees that
n is as small as possible.

We may obtain the base b radix expansion for z,

z =
∞∑

i=0

pi
1
bi

,

by repeated use of the division algorithm; this is the normal process of division, in
base b, dividing n into m. Since m < n, we must first multiply m by b; then the
quotient will be p1 and the remainder will be an integer which is less than n:

bm = np1 + r1.

Next we multiply r1 by b and divide, to get

br1 = np2 + r2.

Inductively find pi and ri such that

bri = npi+1 + ri+1.

Now at each stage, ri < n, so eventually two of remainders will be the same; let k
be the smallest integer such that

rk = ri



5

for some i < k. Then pi+j = pk+j for j = 1, . . . , k − i, and this pattern continues
to repeat. We call this a radix expansion whose repeating part starts after the ith

place and has length k − i.
On the other hand, if z =

∑∞
i=0 pi

1
bi is a radix expansion whose repeating part

starts after the ith place of length k − i, then (bk − bi)z is an integer, and

z =
(bk − bi)z
bk − bi

expresses z as a rational number.
Together, we see that

Proposition 4. Rational Expansion Property Let z ∈ R, with 0 < z < 1.
Then the base b radix expansion of z repeats if and only if b ∈ Q. Moreover, if
z = m

n , then the sum of the lengths of the nonrepeating and the repeating parts of
the radix expansion of z is less than or equal to n.

If the repeating part of the base b radix expansion of z consists of a single
repeating zero, we say that it terminates.

5. Regular Numbers

Definition 2. Let n ∈ Z with n ≥ 2. We say that n is base b regular if the base b
radix expansion of its reciprocal terminates.

Proposition 5. Let n ∈ Z with n ≥ 2. Then n is base b regular if and only if n is
a product of powers of the prime divisors of b.

Proof. We prove both directions of the implication.
(⇒) Suppose that n is base b regular and that p is a prime divisor of n. We show

that b is a prime of divisor of b, so that all primes in n are in b, and n must be the
product of prime divisors of b.

Since n is base b regular, 1
n has a finite base b radix expansion, say of length i.

Then bi

n is an integer, and n divides bi. That is, bi is a multiple of n, so every prime
divisor of n must also be a prime divisor of bi, and therefore of b itself.

(⇐) Suppose that n is a product of powers of the prime divisors of b. Then for
some k ∈ N, we have n | bk, say nm = bk. Then

1
n

=
m

bk
,

which clearly has a finite base b radix expansion. �
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